Topography of glycosylation and UDP-xylose production.
نویسندگان
چکیده
In order to define the location and organization of the numerous reactions involved in polysaccharide assembly during synthesis of proteoglycans and glycoproteins, the topography of some of the glycosylation reactions in chondroitin sulfate synthesis was examined using a relatively new technique for generating permeable cells. Permeable chondrocytes were shown to directly take up nucleotide sugar precursors and incorporate them into chondroitin sulfate proteoglycan (CSPG), allowing specific labeling at each step in chondroitin sulfate synthesis. Subcellular fractionation following labeling with UDP-[14C]xylose, UDP-[14C]galactose, UDP-[14C]glucuronic acid, or [35S]PAPS localized the labeled CSPG to the compartment where each glycosylation reaction occurred. From these experiments it appears that xylose addition begins in the endoplasmic reticulum and continues in the Golgi apparatus where galactose, glucuronic acid, and sulfate are added. This conclusion was confirmed by direct visualization of xylose incorporation using electron microscopic autoradiography (Vertel, B. M., Walters, L. M., Flay, N., Kearns, A. E., and Schwartz, N. B. (1993) J. Biol. Chem. 268, 11105-11112). Further examination of xylose addition showed that permeable chondrocytes can utilize both exogenous UDP-xylose transported into the lumen and UDP-xylose generated from UDP-glucuronic acid within the lumen. The enzyme responsible for this reaction, UDP-glucuronate carboxy-lyase, co-localized with xylosyltransferase activity in subcellular fractions. Orientation toward the lumen in subcellular compartments was determined by trypsin sensitivity in the permeable chondrocytes. Therefore, we conclude that UDP-xylose can be produced in the lumen of the compartment where it is utilized in CSPG synthesis, obviating the need for a direct transport mechanism for this nucleotide sugar and providing close regulation of UDP-xylose and UDP-glucuronic acid levels.
منابع مشابه
Enzymatic Redox Cascade for One-Pot Synthesis of Uridine 5′-Diphosphate Xylose from Uridine 5′-Diphosphate Glucose
Synthetic ways towards uridine 5'-diphosphate (UDP)-xylose are scarce and not well established, although this compound plays an important role in the glycobiology of various organisms and cell types. We show here how UDP-glucose 6-dehydrogenase (hUGDH) and UDP-xylose synthase 1 (hUXS) from Homo sapiens can be used for the efficient production of pure UDP-α-xylose from UDP-glucose. In a mimic of...
متن کاملFunctional UDP-xylose transport across the endoplasmic reticulum/Golgi membrane in a Chinese hamster ovary cell mutant defective in UDP-xylose Synthase.
In mammals, xylose is found as the first sugar residue of the tetrasaccharide GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser, initiating the formation of the glycosaminoglycans heparin/heparan sulfate and chondroitin/dermatan sulfate. It is also found in the trisaccharide Xylalpha1-3Xylalpha1-3Glcbeta1-O-Ser on epidermal growth factor repeats of proteins, such as Notch. UDP-xylose synthase (UXS)...
متن کاملFormation of UDP-Xylose and Xyloglucan in Soybean Golgi Membranes.
Soybean (Glycine max) membranes co-equilibrating with Golgi vesicles in linear sucrose gradients contained UDP-glucuronate carboxy-lyase and xyloglucan synthase activities. Digitonin solubilized and increased the activity of the membrane-bound UDP-glucuronate carboxy-lyase. UDP-xylose did not inhibit the transport of UDP-glucuronate into the lumen of Golgi vesicles but repressed the decarboxyla...
متن کاملUridine diphosphoxylose enhances hepatic microsomal UDP-glucuronosyltransferase activity by stimulating transport of UDP-glucuronic acid across the endoplasmic reticulum membrane.
The UDP-glucuronosyltransferase (UGT) system fulfils a pivotal role in the biotransformation of potentially toxic endogenous and exogenous compounds. Here we report that the activity of UGT in rat liver is stimulated by UDP-xylose. This stimulation was found in native microsomal vesicles as well as in the intact endoplasmic reticulum (ER) membrane, as studied in permeabilized hepatocytes, indic...
متن کاملBiosynthesis of UDP-xylose and UDP-arabinose in Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase
Sinorhizobium meliloti is a soil bacterium that fixes nitrogen after being established inside nodules that can form on the roots of several legumes, including Medicago truncatula. A mutation in an S. meliloti gene (lpsB) required for lipopolysaccharide synthesis has been reported to result in defective nodulation and an increase in the synthesis of a xylose-containing glycan. Glycans containing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 268 15 شماره
صفحات -
تاریخ انتشار 1993